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Simple Summary: Endothelial cells (ECs) form the inner lining of all blood vessels. This endothelium
has vital functions for the body, and endothelial dysfunction is associated with several lifestyle-
related diseases, including cardiovascular and neurodegenerative diseases. Therefore, endothelial
dysfunction contributes significantly to the global health burden. Mitochondria are the powerhouses
of cells and regulate metabolism and cell behavior. The function of ECs is highly dependent on
mitochondria. Cardiovascular risk factors (CVRFs), such as obesity, diabetes mellitus (DM), or chronic
inflammation, can impair mitochondria and thus ECfunction. Endothelial progenitor cells (EPCs) are
a backup for ECscirculating in the bloodstream. They can be recruited from the blood for endothelial
repair. After attachment to the vessel wall, EPCs differentiate into ECs. Recent research has shown
that, like ECs, EPCs are also sensitive to CVRFs., but the mechanisms of damage, and whether
mitochondria play a role, are not yet known. In this review, we describe the role of mitochondria
in endothelial dysfunction. Based on recent studies investigating EPCs in diseases and under the
influence of CVRFs, we discuss the role of mitochondria in EPC deterioration. Moreover, we address
potential therapeutic interventions targeting mitochondrial health to promote endothelial function.

Abstract: Endothelial dysfunction is associated with several lifestyle-related diseases, including
cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health
burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive
production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction.
Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropri-
ate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature
endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunc-
tion and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term
effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence
of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in

Biology 2024, 13, 70. https://doi.org/10.3390/biology13020070 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology13020070
https://doi.org/10.3390/biology13020070
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0009-0004-1228-2946
https://orcid.org/0000-0002-3758-0454
https://orcid.org/0000-0002-2161-9676
https://orcid.org/0000-0002-0958-8280
https://orcid.org/0009-0004-3037-262X
https://orcid.org/0000-0002-8631-9949
https://orcid.org/0000-0002-1168-2444
https://orcid.org/0000-0001-8009-020X
https://doi.org/10.3390/biology13020070
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology13020070?type=check_update&version=1


Biology 2024, 13, 70 2 of 34

EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the
development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in
the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role
of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms
involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions
targeting mitochondrial health to promote endothelial function.

Keywords: mitochondrial dysfunction; reactive oxygen species; cardiovascular risk factors; endothelial
dysfunction; endothelial progenitor cells; cardiovascular disease; neurodegenerative disorders

1. Introduction

Endothelial cells (ECs) cover the lumen of all blood vessels and fulfill various functions
that are essential for the body’s homeostasis. For instance, ECs participate in vascular
tone regulation, blood clotting, and immune functions. Endothelial dysfunction arises,
in particular, under the influence of cardiovascular risk factors (CVRFs), including obe-
sity, physical inactivity, low-grade inflammation, aging, and smoking [1–6]. Endothelial
dysfunction is a major contributor to a plethora of cardiovascular disorders [7], which are
the leading cause of disease burden worldwide [8]. In particular, oxidative stress plays a
key role in endothelial dysfunction and cardiovascular disorders [7,9]. Oxidative stress is
characterized by an imbalance between the overproduction and accumulation of reactive
oxygen species (ROS) and lower antioxidant defense, which can lead to cell damage by
altering proteins, lipids, and nucleic acids [10]. ROS can be formed as signaling molecules
generated by enzymes of the redox signaling pathway [11], which is induced by a range
of stimuli, including pro-inflammatory cytokines and growth factors [12,13]. ROS are
predominantly generated as natural by-products in the mitochondrial electron transport
chain (ETC) [9]. Oxidative stress, hypoxia, and metabolic derangements lead to excessive
ROS production through oxidative phosphorylation due to uncoupled electron transport in
the mitochondrial ETC and adenosine triphosphate (ATP) synthesis [9,14]. Hence, mito-
chondria are a primary hub in ROS production, ROS signaling, and oxidative stress. Any
failure of normal mitochondrial function is referred to as mitochondrial dysfunction and
is characterized by a loss of efficiency in energy production paralleled by increased ROS
generation [15]. Mitochondrial dysfunction is a characteristic of aging [16] and various
chronic diseases [17–19] and is closely linked to endothelial dysfunction and cardiovascular
disease (CVD) development [20].

Within the cardiovascular system, cardiomyocytes, in particular, have a high density
of mitochondria to respond to the energetic demands of the cardiac muscle [21]. In contrast,
endothelial mitochondria are not as abundant or relevant for energy production, as in EC,
75% of energy is obtained through glycolysis [22]. Thus, the potential role of endothelial
mitochondrial dysfunction in endothelial pathophysiology and CVD has been unnoticed
for a long time. However, endothelial mitochondria can generate ROS and relevant other
metabolic intermediates. During inflammation, hypoxia, or stress, ROS may exceed its
physiological levels, disturbing endothelial function and thus promoting the progression
of CVD. Recent research highlights the mitochondria’s central and long-underestimated
contribution in endothelial dysfunction [21,22].

In addition to mature ECs, which are part of the vascular endothelium, there is a
distinct population of circulating endothelial progenitor cells (EPCs). These cells function
as a reserve pool of ECs recruited to repair damaged vascular endothelium or engage in
angiogenesis when needed. Upon recruitment into the vascular wall, EPCs differentiate
into mature ECs, which is why EPCs are also termed endothelial colony-forming cells
(ECFCs) [23]. CVRFs not only adversely affect vascular ECs but also circulating EPCs and
trigger reduced EPC numbers and decreased proliferative and angiogenic potential in situ-
ations of compromised vascular health [24–26]. While EPCs play a vital role in maintaining
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the vascular endothelium, their specific involvement in endothelial dysfunction repair
remains largely unexplored, and the potential impact of mitochondria on EPC function
has received limited attention. Therefore, this review aims to elucidate the significance
of mitochondrial (dys)function in vascular ECs. It also discusses the largely unexplored
area of mitochondrial dysfunction in EPCs and its potential implications in the context of
endothelial dysfunction and associated chronic diseases.

2. Endothelial Function and Dysfunction

ECs play a critical role in the cardiovascular system. ECs form the inner layer of blood
vessels, regulate blood flow, function as a semi-permeable barrier between the circulation
and surrounding tissues, participate in immune response, regulate blood clotting, and initiate
growth and repair of blood vessels, thus ensuring proper vascular function. If dysfunctional,
ECs vastly contribute to the development of CVD. The following subsections will introduce
the main endothelial functions and alterations leading to a dysfunctional endothelium.

2.1. Endothelial Function Is Versatile

Among their multifaceted features, ECs regulate the vascular tone through the release
of vasodilatory and vasoconstrictive molecules, which actively modulate blood vessel
diameter. The main vasodilatory molecule released by ECs is nitric oxide (NO), gener-
ated by the enzyme endothelial nitric oxide synthase (eNOS). In an immediate response,
NO stimulates cyclic guanosine monophosphate (cGMP) production through the enzyme
soluble guanylyl cyclase (sGC) in vascular smooth muscle cells (VSMCs), leading to relax-
ation and vasodilatation [27]. Moreover, NO inhibits the proliferation of VSMCs, prevents
platelet and leukocyte adhesion, and inhibits the expression of pro-inflammatory cytokines,
thus exhibiting vasodilatory and anti-thrombotic features [3,4]. Other endothelial-derived
vasodilating factors are prostacyclin (PGI2) and bradykinin (BK). ECs also secrete balanced
levels of vasoconstricting factors, such as endothelin-1 (ET-1), prostaglandin H2 (PGH2),
thromboxane A2 (TXA2), or angiotensin II (AngII) [3–5], serving as vascular tone regulators.

Furthermore, the endothelium represents an adjustable, semi-permeable barrier. There-
fore, ECs form special structures, so-called junctions, between neighboring cells. Three
types of junctions contribute to the controlled transfer of macromolecules and immune
cells, intercellular communication, and paracellular permeability [28–30]. Gap junctions
(GJs) enable the transport of small molecules between ECs and support intercellular com-
munication, whilst adherence junctions (AJs) and tight junctions (TJs) form structures that
determine paracellular permeability. TJs, on the one hand, fulfill a barrier function by
controlling permeability for small molecules and ions, whereas AJs, on the other hand,
are mainly required for selective transendothelial migration of immune cells [29]. Envi-
ronmental signals lead to junctional remodeling, thus regulating permeability and the
exchange of nutrients and blood cells [28]. In addition to paracellular transport, molecule
transport across the endothelium occurs through transcytosis, i.e., the transcellular trans-
port of molecules via vesicles by carrier-mediated active transport through concentration
gradient-dependent facilitated transport, or through diffusion [31]. Endothelial barrier
function is organ-specific. For instance, in the brain and retina, the endothelial monolayer
is tightly connected to maintain a close barrier, even with reduced transcytosis [32]. The
essential transport of glucose occurs via facilitated transport through glucose transporters
(GLUT), foremost GLUT1 [33]. In contrast, in the liver and kidneys, the endothelium is
discontinuous to allow the desired increased exchange of molecules [34].

ECs also actively participate in immune and inflammatory responses as they not only
secrete a plethora of cytokines and chemokines but also express specific cell adhesion
molecules for immune cells upon activation by inflammatory signals. Thus, ECs mediate
the recruitment and transendothelial migration of leukocytes from the circulation to the
target tissue [35].

In healthy conditions, ECs act by secreting anti-coagulant factors, such as tissue
plasminogen activator (tPA) [4], in an anti-coagulant way to prevent thrombosis and
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maintain blood fluidity [4,5]. Upon injury, ECs secrete pro-thrombotic factors, including
von Willebrand factor (vWF) and plasminogen activator inhibitor-1 (PAI-1), to induce
blood clotting [5].

Two other pivotal roles of ECs are vasculogenesis and angiogenesis, which comprise
the formation and growth of blood vessels [3,4,36]. The strongest angiogenic trigger is
hypoxia, which induces the release of proangiogenic factors, such as vascular endothelial
growth factor (VEGF). Upon binding to the VEGF receptor 2 (VEGFR2) on ECs, VEGF
activates quiescent ECs and initiates angiogenesis, ensuring the reestablishment of oxygen
and nutrients in the tissue [36,37]. However, other bioactive molecules, including growth
factors [38], cytokines [39,40], hormones [41], and non-coding RNAs, such as microRNAs
(miRNA) and long non-coding RNAs (lncRNA), also regulate angiogenesis [42].

Given the versatility of these multifaceted functions of ECs, the vascular endothelium
can emerge as an extensive and dynamic endocrine organ, acting as a vital interface between
the circulation and tissues to ensure body homeostasis. By actively participating in immune
responses, coagulation processes, and vascular remodeling, ECs maintain vascular health,
playing an indispensable role in the cardiovascular system.

2.2. Endothelial Dysfunction: The Central Role of Reactive Oxygen Species

The intricate endothelial functions are crucial for ensuring adequate blood flow and
the overall well-being of the heart and vessels, as well as the organs supplied. However,
when the endothelium loses balance, a cascade of health issues can unfold, particularly
in CVD. This endothelial dysfunction is not an isolated event but rather a consequence
of a complex interplay involving various CVRFs. These factors, dependent on lifestyle
and health conditions, conspire to activate and inflame ECs, setting the stage for health
issues. Obesity, poor dietary habits, physical inactivity, type II diabetes mellitus (T2DM),
aging, smoking, chronic inflammation, and even microbial infections are some of the
underlying causes, as they create a hostile environment characterized by inflammation and
oxidative stress [1–6].

Oxidative stress, driven by ROS, is a key player in endothelial (dys)function. Several
ROS sources in ECs contribute to oxidative stress generation, which can eventually lead
to mitochondrial dysfunction, inflammation, and endothelial dysfunction, as illustrated
in Figure 1.

The majority (~90%) of cellular ROS is generated in mitochondria [43,44]. Key contrib-
utors are ETC constituents: complex I at the flavin mononucleotide (FMN) site [45], and
complex III at the quinol cycle (Q-cycle) [46,47]. Additional ROS-producing enzymes associ-
ated with nutrient metabolism and oxidative phosphorylation are succinate dehydrogenase
(complex II), glycerol-3-phosphate dehydrogenase (GPD), 2-oxoglutarate dehydrogenase
(OGDH), pyruvate dehydrogenase (PDH) complex, proline dehydrogenase (PRODH), dihy-
droorotate dehydrogenase (DHODH), branched chain keto acid dehydrogenase (BCKDH)
complex, acyl-CoA dehydrogenases (very long-chain acyl-CoA dehydrogenase ACDVL;
long-chain acyl-CoA dehydrogenase ACADL) [48], electron transfer flavoprotein dehydro-
genase (ETFDH), and sulfide quinone reductase (SQR) [49,50], which constitute significant
sources of mitochondrial ROS (mtROS). Mitochondrial dysfunction, due to possible dam-
ages in the respiratory chain, loss of cytochrome c (CytC), and imbalanced energy demand,
is associated with excessive ROS production [51].

In addition to mtROS generated by ETC, redox signaling also contributes to ROS
generation. Redox signaling regulates cell growth, differentiation, senescence, apopto-
sis, and autophagy and is induced by [52,53] pro-inflammatory cytokines and growth
factors [12,13,54,55]. By binding to their receptors, reduced nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidases 1, 2, 4, and 5 (NOX1,2,4,5) become activated and
produce ROS as signaling molecules [55–57]. NOX enzymes are localized in the plasma
membrane and thus contribute to cytosolic ROS [58]. However, NOX4 is also localized in
other intracellular compartments, including mitochondria, and it also adds to mtROS [59].
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Figure 1. The interplay between metabolism, inflammation, reactive oxygen species, and mitochon-
drial dysfunction in the development of endothelial dysfunction and cardiovascular disease. Arrows
indicate the directionality and stimulation of the respective processes. Influences that represent
cardiovascular risk factors (CVRFs), i.e., nutrient excess and inflammation, are marked with yellow
flashes. AGE: advanced glycation end products; CVD: cardiovascular disease; EC: endothelial cell;
eNOS: endothelial nitric oxide synthase; mt: mitochondrial; NO: nitric oxide; NOX: NADPH oxidases;
ROS: reactive oxygen species; XDH: xanthine dehydrogenase; XO: xanthine oxidase. The figure was
created using BioRender.com, accessed on 22 January 2024.

The interaction between glucose molecules and essential cellular components leads to
the formation of advanced glycation end products (AGE). These AGE-infused structures
become agents of chaos, promoting the release of cytokines, enhancing cell adhesion, and
even triggering blood coagulation. The downstream effects are several, influencing every-
thing from angiogenesis to overall endothelial function [60–62]. In addition to cytokines
and growth factors, the interaction of AGE with their receptor (RAGE) also induces redox
signaling by NOX [63].

Another enzyme capable of producing ROS is the purine catabolizing enzyme xan-
thine dehydrogenase (XDH). Oxidative stress [64,65] or inflammation [66,67] induce post-
translational modifications that modify the enzymatic action of XDH to xanthine oxidase
(XO) activity, generating superoxide anion (O2·−) [68,69].

BioRender.com
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Oxidative stress can be self-reinforcing through a process referred to as eNOS uncou-
pling [70]. Uncoupled eNOS increasingly forms superoxide instead of NO. Superoxide
reacts with NO, which is still formed by eNOS at lower levels, to generate peroxynitrite
anion (ONOO-) [71]. In mitochondria, peroxynitrite can overwhelm mitochondrial scav-
enging and repair systems for peroxynitrite-dependent oxidative modifications and, thus,
impair mitochondrial energy and calcium (Ca2+) homeostasis and membrane permeability.
This contributes to mitochondrial dysfunction and augmented ROS production, perpetu-
ating a dysfunction cycle. Uncoupling of eNOS hence promotes and reinforces oxidative
stress and mitochondrial dysfunction, but, at the same time, it causes a reduction in NO
bioavailability, with severe effects on endothelial function [72,73].

Besides mitochondria, the endoplasmic reticulum (ER) is a source of ROS under
certain conditions: ER stress triggers unfolded protein response (UPR), which activates
protein kinase RNA (PKR)-like ER kinase (PERK), inositol-requiring protein-1 (IRE1), and
activating transcription factor-6 (ATF6). These three UPR signal transduction mechanisms
can activate inflammatory signaling via various pathways, including nuclear factor kappa
B (NFκB) signaling, which also increases ROS production [74]. Moreover, an ER enzyme
involved in disulfide bond formation within protein folding, i.e., ER oxidoreductin (ERO1),
generates hydrogen peroxide (H2O2) [75].

In the scope of ROS generators, red blood cells (RBCs) are also considerable con-
tributors [76,77]. The release of ROS is, on the one hand, induced by endogenous factors,
including, in particular, the autoxidation of oxyhemoglobin (HbO2) formed by oxygen bind-
ing to ferrous heme (FeII) [76,77]. It is thereby oxidized to its ferric form (FeIII), generating
methemoglobin (metHb) and superoxide anion [78], which, via several mechanisms, lead
to the formation of H2O2, hydroxyl radical (•OH), and hydroxyl anion (OH−) [76,79,80].
Notably, superoxide anion -also rapidly reacts with NO, generating the highly reactive
peroxynitrite, a potent inducer of endothelial injury [81]. In T2DM, RBC-released ROS in-
duce endothelial dysfunction via arginase I [82], with peroxinitrite operating as an arginase
stimulator and mediating the malfunction of ECs [83]. Similar findings were reported in
mice models [84].

On the other hand, oxidative stress in RBCs can be triggered by exogenous metabo-
lites like superoxide anion, peroxynitrite anion, and H2O2 from adjacent cells, including
endothelial and immune cells [76]. Thus, besides their role in oxygen transportation, RBCs
are crucial for redox balance [85,86], and RBC autoxidation is a considerable source of
ROS-promoting oxidative stress in the vasculature [76,77].

Oxidative stress is not an isolated phenomenon. It is closely linked to inflammation
as increased ROS reinforce inflammation by promoting leukocyte extravasation and by
stimulating cytokine production [3–5,87,88]. Pro-inflammatory stimuli destabilize the junc-
tions and thus disrupt the endothelial barrier and increase the permeability [89]. Moreover,
oxidative stress per se causes a redistribution of junctional molecules and interferes with
signaling pathways associated with barrier function regulation [90].

Under physiological conditions, ROS production and maintenance are regulated
through an antioxidant system constituting enzymatic and non-enzymatic factors. The
most prominent enzymes are superoxide dismutases (SOD1-3), catalase (CAT), glutathi-one
peroxidases (GPX1-7), NAD(P)H quinone dehydrogenase 1 (NQO1), heme oxygenases
(HOX1-2), thioredoxin (TXN), and sulfiredoxin 1 (SRXN1). The non-enzymatic system
includes uric acid, glutathione, vitamins, and plant secondary metabolites (e.g., polyphe-
nols) [91,92]. These enzymes and antioxidants act in concert to balance the equilibrium
between ROS production and oxidative stress.

An imbalance in the antioxidant system and ROS production leads to increased ox-
idative stress, reduced NO bioavailability, and inflammation as the endothelium shifts
to an activated, pro-inflammatory, vasoconstrictive, and pro-thrombotic phenotype with
increased cytokine and growth factor release, which promote proliferation, migration, and
permeability, as well as imbalanced production of vasodilatory vs. vasoconstrictive fac-
tors [3–5,93] (Figure 2). The intricate interplay between oxidative stress, a pro-inflammatory
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milieu, and EC activation and dysfunction contributes to endothelial dysfunction and car-
diovascular disorders. Notably, the significance of mitochondrial dysfunction as a primary
source of ROS in endothelial dysfunction has started to gain recognition.
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Figure 2. Characteristics of healthy and dysfunctional endothelia and the role of endothelial pro-
genitor cells in repair. Cardiovascular risk factors (CVRFs) disturb normal endothelial function and
promote an activated endothelial cell phenotype. A dysfunctional endothelium is accompanied by
oxidative stress with increased reactive oxygen species (ROS), inflammation, and reduced nitric
oxide (NO) bioavailability. Under healthy conditions, circulating endothelial progenitor cells (EPCs)
support, as endothelial colony-forming cells (ECFCs), endothelial repair and recovery. However, it is
unclear how CVRFs affect ECFC efficacy and whether the cells remain able to complete repair and
restore the endothelium. The figure was created using BioRender.com, accessed on 22 January 2024.

3. Mitochondrial Function in a Healthy Endothelium

Mitochondria are highly dynamic organelles that not only generate energy in form of
ATP, but also sense and respond to the surrounding environment. The following subsections
will describe the role of mitochondrial dynamics, mitochondrial metabolism, and mtROS
in EC function.

3.1. Mitochondrial Structure and Dynamics in Endothelial Cells

Mitochondria, essential powerhouses within cells, possess a distinct structure char-
acterized by outer and inner membranes that enclose the mitochondrial matrix [94]. Mi-
tochondrial function is highly dependent on the ETC system, a compilation of proteins
intricately associated with the inner membrane comprising four distinct enzymatic com-
plexes (I–IV) [95]. The electron transport is coupled to proton ejection from the mitochon-
drial matrix into the intermembrane space in every complex except for complex II [95].
Proton ejection generates an electrochemical gradient, creating a proton-motive force to
phosphorylate adenosine diphosphate (ADP) into adenosine triphosphate (ATP) through
ATP synthase [96,97]. In the intact endothelium, healthy mitochondria appear to have
cylindrical structures with an inner mitochondrial membrane with folded cristae enclosing
the mitochondrial matrix [98].

The mitochondrial structure is dynamic and balanced between fission and fusion
processes, which determine not only mitochondrial shape but also mitochondrial functions,

BioRender.com
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including performance, ROS production, and quality control [99]. The term ‘mitochondrial
quality control (MQC) system’ has been established for this network, which tightly balances
mitochondrial dynamics, i.e., fission and fusion events and mitophagy [100,101]. Mitochon-
drial fission is mainly regulated by cytoplasmic dynamin-related protein 1 (DRP1) with the
assistance of numerous factors, including mitochondrial fission protein 1 (FIS1), mitochon-
drial fission factor (MFF), and mitochondrial dynamic proteins (MID49 and MID51) located
at the outer membrane [102,103]. Mitochondrial fusion is controlled by membrane proteins
mitofusin (MFN) 1 and MFN2, together with optic atrophy protein 1 (OPA1) [102,103].
OPA1 furthermore promotes tight folding of cristae, which increases mitochondrial respira-
tory efficiency and blunts mitochondrial dysfunction [104]. Mitochondrial dynamics, such
as migration and proliferation, are essential for EC function [105], highlighting the central
role of mitochondrial morphology for endothelial function.

3.2. Mitochondrial Metabolism in Endothelial Cells

The energy metabolism of the vascular endothelium comprises four major metabolic
processes: glycolysis, oxidative phosphorylation, fatty acid oxidation (β-oxidation), and
glutamine metabolism [106]. Depending on the distinct physiological and pathological
stimulations, such as hypoxia and inflammation, cells can adapt their metabolism. This
metabolic switch precedes functional changes and disease developments [107,108].

In contrast to neurons and cardiomyocytes, which are highly endowed with mito-
chondria and perform mitochondrial oxidative phosphorylation and fatty acid oxidation
for energy metabolism [109,110], ECs in both macro- and microcirculation depend mainly
on glycolysis, which occurs in the cytoplasm [109–115]. On the one hand, using a less
energy-efficient metabolic pathway facilitates oxygen diffusion to surrounding cells by
consuming minimal oxygen [116]. On the other hand, using glycolysis can reduce ROS
generation [116]. In fact, except for ECs from the blood–brain barrier (BBB) [117], ECs have
fewer mitochondria and consume lower amounts of oxygen than other cell types, such
as neurons and liver and muscle cells [118,119]. Importantly, mitochondria in ECs have
functions other than the generation of ATP, such as biomass generation and signaling [120].
Thus, in a healthy state, ECs are quiescent, mainly relying on glycolysis [111], but this
steady cellular metabolism changes during cell activation [111]. During vessel growth and
sprouting, fatty acids are important for ECs, being metabolized by mitochondrial fatty
acid oxidation [112,121] and thereby producing acetyl-coenzyme A (acetyl-CoA), reduced
nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2)
and yielding high amounts of ATP [122]. Also, glutamine metabolism leads into the mi-
tochondrial tricarboxylic acid (TCA) cycle, providing about a third of TCA cycle-derived
carbon [123]. However, under normal conditions, ECs do not use fatty acids or glutamine
for obtaining energy but mostly for de novo synthesis of nucleotides required for DNA
replication and cell proliferation [123,124]. Excess intracellular fatty acids can be stored as
cytosolic lipid droplets in ECs [125].

3.3. Mitochondrial ROS Homeostasis in Endothelial Cells

Remarkably, even at physiological levels, mtROS and the proteins orchestrating mito-
chondrial biogenesis play a central role in the regulation of angiogenesis [126]. ROS activate
the promoter of the transcription factor hypoxia-inducible factor-1 α (HIF1α) [126,127],
which transactivates genes involved in promoting angiogenesis, including VEGF [128],
and reinforces VEGFR2 signaling [129]. In contrast, under hypoxic conditions, HIF plays a
critical role in maintaining homeostasis. HIF1α and HIF2α promote the activation of the cy-
tochrome c oxidase 4 isoform 2 (COX4I2) subunit gene transcription, resulting in improved
electron transfer within the ETC [130]. HIF1α further contributes to decreased complex
I activity through induction of the NADH dehydrogenase (ubiquinone) 1 alpha subcom-
plex, 4-like 2 (NDUFA4L2) gene [131]. As mentioned above, mtROS is mainly formed
in ETC complex I and III [45–47,132–134]. Depending on the general cellular conditions,
ROS formation can vary between physiological and pathological [132–134]. At complex
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I [132], a high NADH/NAD+ ratio results in reduced FMN levels and triggers excessive
ROS production. This scenario is induced by damage, ischemia, loss of CytC (apoptosis),
and low ATP demand [133,134]. ROS production at complex III mainly happens through
auto-oxidation of the Q-cycle intermediate ubisemiquinone [132–134].

Moreover, exposure to H2O2 increases mitochondrial Ca2+ concentration in ECs and
regulates barrier function maintenance and eNOS activity [22,135,136]. Indeed, NO plays a
key role in mitochondria and can inhibit mitochondrial respiratory chain complex I (through
S-nitrosylation) and complex IV, modulating EC respiration and ATP production [21].
Dysregulation of this mechanism has also been associated with mitochondrial oxidative
stress [21]. Consequently, despite their modest presence within EC, mitochondria harbor
the latent potential to exceed physiologic ROS formation, with pathologic ROS levels
exerting notable disruptions in endothelial function.

4. Unveiling Endothelial Mitochondrial Dysfunction in Pathophysiology

Mitochondrial dysfunction is characterized by a loss of efficiency in the ETC, resulting
in reduced synthesis of high-energy molecules, such as ATP [137], increased ROS gen-
eration, and oxidative stress [15]. Mitochondrial dysfunction is associated with aging
as well as many chronic diseases, including CVD, neurodegenerative disorders (NDDs),
metabolic diseases, and chronic infections [16–20,100,138–141]. The following subsections
will describe the mechanisms of dysfunction in ECs and the mitochondrial contribution to
CVD, NDDs, and DM.

4.1. Mitochondrial Dysfunction in Endothelial Cells

At physiological levels, ROS act as signaling molecules and are beneficial for mito-
chondria. However, when in excess, ROS are harmful, altering biomolecules and impairing
mitochondrial function [142], highlighting the importance of tight mitochondrial regulation
of ROS generation. One origin of excess mtROS is damaged mitochondria, which are prone
to shifting mitochondrial dynamics to fission, resulting in an overload of mitochondrial
fragments. Therefore, a highly efficient mechanism of removing damaged mitochondria
exists, i.e., mitophagy, to maintain mitochondrial health, which is of particular value for
the cardiovascular system [143,144].

The mitochondrial structure, related to fission and fusion processes, plays a vital role in
maintaining the fine-tuning of mitochondrial dynamics and cellular function [145]. In line
with this, mitochondrial structural damage has been identified in the context of endothelial
dysfunction. For instance, throughout aging, human umbilical vein ECs (HUVECs) present
degenerated cristae and swollen regions, along with decreased mitochondrial membrane
potential (MMP) and loss of fusion and fission events [146]. Treatment with high glucose
and palmitate induces structural changes in rat aortic EC mitochondria, and reduced
mitochondrial size is associated with elevated ROS levels and augmented cellular levels of
superoxide anion and cytoplasmic H2O2. This increased oxidative stress is accompanied
by a loss of MMP [147]. Furthermore, ECs reveal pronounced alterations, on the one
hand, in mitochondrial dynamics, with increased mitochondrial fission (increased FIS1
and phosphorylated-DRP1/DRP1 ratio) and decreased MFN2. On the other hand, ECs
differ in apoptosis, with increased expression of cleaved caspase 3 and caspase 9, CytC
release, decreased B-cell lymphoma 2 (BCL2), and increased BCL2-like protein 4 (BAX)
levels [147]. These data highlight the link between oxidative stress, altered mitochondrial
dynamics, mitochondrial dysfunction, and impaired ECs. Mitochondria from HUVEC
subjected to high-glucose treatment show an opening of the mitochondrial permeability
transition pore (mPTP) and CytC release. These effects are inhibited by overexpression
of uncoupling protein 2 (UCP2), a mitochondrial protein able to uncouple the oxidative
phosphorylation from ATP synthesis by regulating MMP, modulating ROS generation,
and contributing to increased NO levels [148]. UCP2 is often upregulated as an adaptive
cellular response to demanding environments, and it has a protective role in high-salt-
induced injury in ECs by regulating autophagy. Moreover, UCP2 overexpression results in
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a higher number of mitochondria and the upregulation of Parkin (PARK2), a critical protein
involved in mitophagy [149].

An inflammatory environment mimicked by stimulation with tumor necrosis factor
(TNF)α in primary rat aortic ECs resulted in augmented mitochondrial fission with in-
creased NF-κB activation [150]. This response was found to be mediated by Drp1 [150], and,
indeed, pharmacological inhibition of mitochondrial fission with mitochondrial division
inhibitor 1 (Mdivi-1) improved endothelial function in these cells [147,150].

But, there is another link between mitochondria and inflammation. Deficiency of
isocitrate dehydrogenase NADP+ 2 (IDH2), a TCA cycle enzyme, is associated with in-
creased endothelial inflammation in HUVEC [151] and contributes to enhanced levels of
cytokine transcripts, such as TNFα and interleukin (IL) 1β, coincidently with activated
p66shc (SHC adaptor protein 1) [151], a protein known to promote oxidative stress in ECs.
Furthermore, Idh2 downregulation and increased activation of p66shc in mouse umbilical
vein ECs lead to changes in the abundance of ETC complexes, which result in decreased
oxygen consumption [151], demonstrating a link between p66shc and mitochondrial en-
dothelial dysfunction. In fact, this damaging role of p66shc is regulated by sirtuin 1 lysine
deacetylase (Sirt1) acetylation [152].

Oxidative stress overload also adversely affects mitochondrial DNA (mtDNA) [142].
In general, circular mtDNA is more prone to ROS-induced damage and mutation not only
due to the close proximity to one of the ROS sources, i.e., mtROS, but also because of
the lack of additional protection from histones compared to genomic DNA [142]. It has
been previously described that EC exposed to ROS undergo mtDNA damage [153], which
alters mitochondrial gene and protein expression, impairs mitochondrial function, and
contributes to vascular disease development [153].

Impaired mitochondria activate innate immune pathways with the release of mtDNA [154]
recognized as damage-associated molecular patterns (DAMPs) by pattern recognition
receptors (PRR) [155]. Thereby, the nod-like receptor family pyrin domain-containing 3
(NLRP3) inflammasome is triggered. The NLRP3 inflammasome is a protein complex in
the cytoplasm that mediates an innate immune response and detects microbial motifs and
endogenous danger signals. NLRP3 induction leads to caspase 1 activation and the release
of pro-inflammatory molecules, including cytokines IL1β and IL18, and potentially leads
to cell death [156–158].

Thus, mitochondrial and endothelial dysfunction are tightly related. Altered and dam-
aging cellular environments, including increased levels of glucose [147,148], palmitate [147],
and inflammatory cytokines [150], contribute to endothelial dysfunction, with particular
implications for mitochondria-controlled mechanisms. Hyperglycemia, hyperlipidemia,
and inflammation represent major CVRFs that ultimately lead to an increased risk for
CVD or NDDs (Figure 3). Therefore, tackling the mechanisms involved in mitochondrial
dysfunction in ECs can provide critical insights into the development and progression
of CVD.

4.2. Endothelial Mitochondrial Dysfunction in Atherosclerosis: A Catalyst for
Cardiovascular Diseases

Atherosclerosis is a chronic inflammatory condition and a common precursor of
CVD [159]. It is characterized by lipid, mainly cholesterol, and fibrin accumulation in
the form of atheroma plaques, accompanied by calcification, endothelial activation, and
an inflammatory response within arterial walls [160]. One of the major driving forces of
the inflammatory response in ECs is low-density lipoprotein (LDL) in its oxidized form
(oxLDL), promoting plaque formation [161–163]. OxLDL binds to the injured vascular
endothelium, attracts immune cells, enhances their adhesion, and thereby initiates an
immune response [162].
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Figure 3. Mitochondria play a decisive role in shaping healthy vs. dysfunctional endothelial phe-
notypes. Cardiovascular risk factors (CVRFs) trigger detrimental mitochondrial impairment and
dysfunction. In this context, impaired or damaged mitochondria discharge reactive oxygen species
(mtROS) and mitochondrial-damage-associated molecular patterns (mtDAMPs) into the cytoplasm,
which are degraded in the NLRP3 inflammasome. Mitochondrial dynamics shift towards increased
fission. Mitophagy, a cellular process that involves the selective removal of damaged or dysfunctional
mitochondria, emerges as a guardian of endothelial homeostasis. This process takes on the role of an
athero-protective sentinel, as it systematically rids the endothelium of compromised mitochondria,
thus safeguarding against the progression of atherosclerosis. Disruption of mitochondrial function
and dynamics can pave the way for the onset of endothelial dysfunction and diseases. The figure
was created using BioRender.com, accessed on 22 January 2024.

Mitochondrial dysfunction in atherosclerosis was extensively studied in SMCs [164,165]
and immune cells, including macrophages [166,167]. Only recently has the significance
of mitochondrial damage in ECs been recognized as a pivotal factor contributing to the
derangement of the endothelium in atherosclerosis. Consequently, this recognition bears
significant new implications for the understanding of CVD development [20,73,168]. The
crucial role of properly functioning endothelial mitochondria is highlighted by several
publications extensively reviewing its function in the onset and advancement of atheroscle-
rosis [142,145,169–171]. Moreover, the pivotal role of ECs and the result of a damaged
endothelium have been widely studied in regard to atherosclerotic progression [172,173].

In fact, endothelial activation [174], accompanied by reduced NO generation [175], ini-
tiates atherosclerosis [160], in particular in arterial segments with turbulent flow [174,176]
and low wall shear stress [177]. Disturbed flow triggers changes in mitochondrial mor-

BioRender.com


Biology 2024, 13, 70 12 of 34

phology by stimulating fission, resulting in increased DRP1 levels, excessively fragmented
mitochondria, and mtROS release [176]. In vascular pathologies, including atherosclerosis,
endothelial mitochondria show functional disturbances and structural changes within
the inner arrangement of the mitochondrial membrane and reduced and disorganized
cristae [98]. A recent study underlined the importance of mitochondrial dynamics in regard
to atherosclerosis progression by investigating the athero-protective role of Opa1 in ECs
from LDL receptor (LDLR)-deficient mice [103]. OPA1 silencing in HUVECs resulted in
reduced endothelial migration and increased oxidative stress, highlighting the role of
OPA1 in EC response to laminar flow by reducing oxidative stress [103]. When exposed to
disturbed flow, Opa1 expression was reduced in mouse ECs, indicating that endothelial
mitochondria indeed tend to fragment under atherosclerotic conditions [103]. An overview
of mitochondrial dynamics can be found at the top right in Figure 3.

Endothelial mitochondrial damage can further be induced by Porphyromonas gingivalis
(P. gingivalis), a pathogen found in atherosclerotic plaques, also elevating mtROS [178]
and promoting mitochondrial fragmentation in a DRP1-dependent manner [179]. Mito-
chondrial impairment in P. gingivalis-infected ECs is partially regulated by the rat sarcoma
(Ras) homolog family member A/Rho associated coiled-coil containing protein kinase 1
(RhoA/ROCK1) pathway activation, resulting in elevated DRP1 phosphorylation levels at
Ser616 and promoting DRP1 mitochondrial translocation [180]. Moreover, mitochondria of
infected ECs were characterized by a loss of MMP, lower ATP levels [179], and decreased
mtDNA copy numbers [180]. These findings emphasize that damaged mitochondria are
prone to shifting mitochondrial dynamics to fission.

Besides regulating mitochondrial dynamics [181,182], DRP1 plays an important role in
oxLDL-induced endothelial damage, supporting the development of atherosclerosis [183].
The inhibition of this protein by Mdivi-1, studied both in vivo in apolipoprotein E (ApoE)-/-
mice [184] and in vitro in HUVECs [185], resulted in athero-protective effects, which
suggests its potential as a therapeutic target for multiple CVDs, including atherosclero-
sis [182,186]. Moreover, oxLDL directly affects the NLRP3 inflammasome in ECs [158,187].
In in vivo studies utilizing endothelial-specific NLRP3 mutant mice, a notable reduction in
atherosclerosis severity was observed [187]. The attenuated disease progression was sug-
gested to be due to a lower ROS generation, thus decreasing apoptotic cell death rates [187].

Although the mechanism behind endothelial mechano-transduction remains elusive,
recent studies reported oxidative phosphorylation driving mitochondrial ATP generation
upon shear stress [188]. Vascular ECs exposed to flow transduce shear stress into mitochon-
drial ATP synthesis, activating Ca2+ influx via purinoceptors, i.e., purinergic receptors [189],
with mitochondria regulating Ca2+ homeostasis [190]. Elevated intracellular Ca2+ levels
stimulate NO generation and, therefore, induce flow-dependent vessel relaxation [191].
Thus, changes in shear stress are associated with cardiovascular disorders, i.e., atheroscle-
rosis [192–194]. Ca2+ overload initiates the opening of mPTP, causing tissue damage,
including ischemia-reperfusion injury [195]. Recently, it was found that the expression of
endothelial mitochondrial Ca2+ uniporter (MCU) complex in HUVECs is modulated by
shear stress both on gene expression and protein levels, with the most prominent change in
mitochondrial Ca2+ uniporter regulator 1 (MCUR1) expression (downregulation) under
atheroprone, i.e., disturbed, flow [196]. It is suggested that MCUR1 levels regulate the
sensitivity of mPTP to mitochondrial Ca2+ concentration [196].

The effect of shear stress on endothelial mitochondria depends on shear stress prop-
erties [197,198]. On the one hand, laminar shear stress promotes an anti-inflammatory
phenotype [199,200] and positively influences endothelial mitochondria [201,202], and, on
the other hand, oscillatory shear stress shows pro-inflammatory characteristics in ECs [203].
Oscillatory shear stress causes mitochondrial dysfunction, producing excessive ROS and
inflammation in vascular ECs, followed by mitochondrial-induced inflammation [197]. It
promotes an inflammatory environment [204] and directly influences plaque formation and
stability [205]. In line with these findings, oscillatory shear stress enhances fission but does
not support mitophagy in mouse aortic ECs [203]. Enlarged and swollen mitochondria with
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damaged membranes, fewer cristae, and an abnormal internal arrangement were observed
in the ECs of human atherosclerotic plaques through transmission electron microscopy [98].

4.3. Endothelial Mitochondrial Dysfunction in Diabetes Mellitus

Hyperglycemia is a main characteristic of DM, and it is considered a major contribu-
tor to endothelial dysfunction, a detrimental event in the pathogenesis of DM-associated
micro- and macro-vasculopathies [206]. High intracellular glucose increases ROS lev-
els in ECs, ultimately leading to cell and tissue injury [207]. As ECs rely mainly on
glycolysis for their energy source, mitochondria are essential for Ca2+ homeostasis and
ROS generation. Overproduction of ROS by the mitochondrial ETC caused by hyper-
glycemia affects various aspects of mitochondrial function, as discussed in the Sections 3.3
and 4.1. Hyperglycemia-induced endothelial mitochondrial dysfunction ultimately leads
to mitochondria-dependent apoptosis [208].

In fact, mitochondrial fragmentation has been identified in ECs isolated from the arm
vein of diabetic patients [209] and in retinal and coronary ECs of diabetic rodents [210,211].
These changes in diabetic patients and mice, which correlated with increased FIS1 and
DRP1 levels, respectively [209,211], were also observed in aortic ECs cultured under hy-
perglycemic conditions [209]. Diabetic retinopathy is also associated with disturbed mito-
chondrial dynamics in human retinal ECs, where the acetylation of MFN2 protein plays
a role [212]. However, hyperglycemia also affects other mitochondrial aspects, such as
mtDNA repair mechanisms, which are impaired in hyperglycemia. Moreover, downregula-
tion of the lncRNA lncCytB is involved in mitochondrial genomic stability and is reduced
in streptozotocin (STZ)-induced diabetic mice and human donors with retinopathy [213].

In addition to these isolated effects of DM on the endothelium, hyperglycemia exac-
erbates mitochondrial dysfunction in ECs in CVD. Mitochondrial fragmentation occurs
in hemorrhagic transformation after middle cerebral artery occlusion, but only under
conditions of hyperglycemia, i.e., in STZ-induced diabetic mice [214]. In line with these
findings, mtROS production is impaired in saphenous veins of coronary artery disease
(CAD) when patients are also diabetic [215]. Thus, the endothelial dysfunction induced by
hyperglycemic insults in DM multiplies the patient’s cardiovascular risk.

4.4. Endothelial Mitochondrial Dysfunction in Neurodegenerative Disorders

Several NDDs are characterized by endothelial dysfunction [216–219]. Moreover,
the risk for dementia is increased by CVRFs, such as obesity, physical inactivity, and
smoking [220]. Notably, endothelial mitochondrial dysfunction was associated with the
development and progression of several NDDs [19,100,138,218].

The blood brain barrier (BBB) poses a significant challenge in the context of endothe-
lial dysfunction in NDDs, which mediates brain homeostasis [221] and consists of ECs,
mural cells, including pericytes and VSMC, and astrocytes [216]. Brain microvascular
ECs (BMECs) are directly in contact with circulating factors [221] and, due to their unique
features, have a decisive role in maintaining the BBB. Highly developed TJs [222] ensure
low BBB permeability and high mitochondria content [138,223,224]. Moreover, BMECs are
special regarding their mitochondria. Already in 1977, a distinct difference in endothelial
mitochondria abundance, dependent on their properties, was described in rats [224]. The
endothelial cytoplasmic volume of the BBB comprises 8–11% of mitochondria, whilst cap-
illary ECs from non-BBB regions have fewer mitochondria, occupying only 2–5% of the
cytoplasm [224]. This implicates a higher metabolic activity and capacity and highlights a
particular role of mitochondria in the physiology and pathology of ECs from the BBB [224].

In fact, the dominating role of mitochondrial oxidative stress in BMECs and its con-
tribution to BBB damage was recently reviewed by Wang et al. [100]. Mitochondrial
ROS [225,226] and oxidized mtDNA [227,228], together with CytC [229], n-formyl pep-
tide [230], and cardiolipins [231] released in the cytoplasm, are recognized as DAMPs and
trigger inflammatory responses in BMECs [100,138,232]. The NLRP3 inflammasome is
activated by mtROS or mtDNA [227] or through binding to the CD36 membrane receptor,
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which further activates NF-κB [138]. As an inflammatory response, ECs express cellular ad-
hesion molecules (CAMs), including vascular and intracellular CAMs (VCAM and ICAM),
which also stimulate the NLRP3 inflammasome to release pro-inflammatory cytokines,
causing BBB injury [138]. The mtDAMP-induced inflammatory response in cerebral ECs
(CECs) was also extensively reviewed [138,232]. In addition, lipopolysaccharide (LPS) can
efficiently contribute to BBB leakage by triggering an inflammatory response [233] and
also by inducing mitochondrial dysfunction [234]. LPS impairs mitochondrial oxidative
phosphorylation and reduces mitochondrial function in CECs [234]. Furthermore, by in-
hibiting oxidative phosphorylation, ECs suffer from TJ disruption [234] and high oxidative
stress, promoting mitochondrial fragmentation due to Drp1 activation, which increases
BBB permeability [235]. The important role of cerebral endothelial mitochondria for BBB in-
tegrity was also shown in vivo through pharmacological mitochondrial inhibition [234]. A
disrupted BBB can exacerbate the deposition of disease-specific toxic substances, including
amyloid β (Aβ), α-synuclein, fibrin, neurotoxins, and pathogens, with mitochondria being
involved in multiple pathological processes leading to unfavorable BBB changes [100].

Alzheimer’s disease (AD) is an NDD that progresses with age; it has the strongest
causality for dementia. It is characterized by Aβ accumulation, which leads to plaque
formation [236]. Mitochondrial dysfunction has also been proposed as the potential primary
cause of AD [237].

In fact, among all cellular organelles, mitochondria are most susceptible to Aβ-induced
dysfunction [238]. Exposure of mouse brain capillary ECs to Aβ causes increased oxidative
phosphorylation, cellular respiration characterized by accelerated oxygen consumption,
and mitochondrial superoxide anion generation, potentially generating oxidative dam-
age [239]. All of these changes are accompanied by elevated mitochondrial Ca2+ concen-
tration, with the Ca2+ influx regulated by multiple pathways stimulating ROS production
and, consequently, mitochondrial dysfunction [239]. Complexing Ca2+ with EDTA not
only abolished mitochondrial activity dysregulation but prevented morphological changes
(superoxide anion-induced fragmentation) and apoptotic cell death, indicating the cyto-
toxic properties of mitochondrial Ca2+-overload [239]. In addition, ECs exposed to Aβ

peptides had elevated ROS levels, further contributing to BBB damage [240]. Moreover,
Aβ peptides (unmodified, isomerized, and phosphorylated) diversely impact mitochon-
drial function in vitro, with isomerized Aβ causing the most adverse outcomes: high
oxidative stress, cytotoxicity, and increased mitochondrial potential and respiration. This
indicates that post-translational Aβ modifications affect endothelial BBB cells [240]. Inter-
estingly, the long-lasting destructive impact of Aβ on mitochondrial respiration capacity is
strongest under hypoglycemia in primary human brain ECs, elucidating the underlying
mechanism cohering dysglycemia and AD in DM [241]. In Aβ-challenged CECs, H2O2
synthesis is upregulated together with mitochondrial membrane depolarization [242]. Aβ

uptake in endothelial mitochondria is hindered by Coenzyme Q10 (CoQ10), an antioxidant
lipophilic coenzyme showing cytoprotective properties [243]. The detrimental impact
of Aβ on mitochondria and BBB was also described in humans [244]. Notably, human
cerebral microvasculature is characterized by mitochondrial loss in AD [245]. The first
in vivo study with transgenic mice investigating mitochondrial abnormalities occurring
close to Aβ plaques was published in 2013 [246], which demonstrated that mitochondria
proximal to dense Aβ plaques reveal structural and functional abnormalities, including
reduced MMP, swollen and dystrophic morphology, and increased mitochondrial loss
and fragmentation [246].

Although AD is probably the most prominent and best-studied example of the relation-
ship between mitochondrial dysfunction in ECs and NDDs, it is not a unique phenomenon.
Vascular dementia (VD), for example, is caused by CVRFs and is associated with endothelial
dysfunction and cardiovascular problems throughout the body. Also, in VD, an implication
of mitochondrial dysfunction in ECs is suggested [218]. These findings emphasize the
contribution of endothelial mitochondrial dysfunction to the development and progression
of NDDs, and targeting mitochondria in this regard is of relevant therapeutic potential.
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5. Endothelial Progenitor Cells in Health and Disease

Due to the limited regenerative potential of mature vascular ECs, circulating EPCs,
which mainly derive from hematopoietic stem cells in the bone marrow [247], can be re-
cruited to support endothelial recovery during vascular growth and repair [24]. In vitro,
two main types of EPCs are classified. ‘Early’ EPCs emerge soon after isolation, show a
spindle-shaped morphology, proliferate slowly, and have an in vitro life span of only about
one month. Early EPCs support the existing endothelium in a paracrine way [23,248]. ‘Late’
EPCs, i.e., ECFCs, are progenitor-derived cells that grow out in culture after several days
and form colonies of mature ECs with a cobblestone morphology. ECFCs can form de
novo vessels in vitro and in vivo [23,248]. Regardless of completed differentiation, ECFCs
still exhibit progenitor cell features. Despite sharing the same phenotype and morphology
with mature ECs, e.g., HUVECs, ECFCs not only proliferate faster but also react more
sensitive towards angiogenic factors, highlighting their importance in neovascularization
and repair mechanisms [249] (Figure 2). Additionally, ECFCs are characterized by high
clonogenic potential (colony-forming ability). Differentiated to mature ECs, ECFCs express
endothelial markers including CD31, vWF, vascular endothelial (VE)-Cadherin (CD144),
CD146, and VEGFR2, and are negative for the leukocyte and monocyte markers CD45 and
CD14. Expression of CD34, a marker for vascular EPCs, diminishes throughout in vitro
culture [23,250,251]. ECFCs have the ability to home to ischemic tissue and initiate neovas-
cularization [252]. The angiogenic capacity of ECFCs is facilitated by their ability to form
new vessels and to release paracrine factors that promote and support vascular repair [250].

ECFCs can be isolated from peripheral or umbilical cordblood (UCB) by culturing
mononuclear cells under endothelial-specific conditions [23,251,252]. The cell number is
about 15-fold higher in UCB compared to adult peripheral blood, with neonatal ECFCs also
showing faster outgrowth [253]. Due to their minimally invasive isolation method, ECFCs
enable personalized patient-related studies on endothelial function and dysfunction [254].

5.1. Endothelial Progenitor Cells and Cardiovascular Risk Factors: Implications for Cardiovascular
Disease and Diabetes

Similar to mature vascular ECs, EPCs are susceptible to CVRFs. The number EPC
is reduced in peripheral blood in type I and type II DM and exhibit functional abnor-
malities [255,256], which worsen throughout the course of DM [255]. Moreover, EPCs
from diabetic patients differ regarding in vitro cultivation. For instance, isolated ECFCs
from T2DM patients show impaired colony outgrowth, less tube formation, decreased
proliferation, migration, and impaired in vivo neovascularization (the latter was shown
in an animal model) [25,257]. Notably, improved glycemic control also positively impacts
EPC numbers and improves the function of differentiated ECFCs [256,258]. Furthermore,
the number of EPCs inversely correlates with body mass index (BMI) [259,260] and levels
of insulin, leptin, and C-reactive protein (CRP) [260], with ECFCs originating from obese
patients showing a slower proliferation rate [260].

These findings indicate that CVRFs have long term effects on circulating EPCs, or even
their stem cell precursors (Figure 4). The underlying mechanisms may include epigenetic
changes [261,262] as well as covalent modifications of cell components, i.e., oxidative
damage of biomolecules, including proteins and lipids, which may lead to potentially
irreversible and adverse consequences [263]. Additionally, oxidative DNA damage can
induce either permanent genetic or epigenetic changes [264], that might be passed on
daughter cells through cell division.
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Figure 4. Exposure of endothelial progenitor cells to cardiovascular risk factors disturbs mitochondrial
function in the differentiated endothelial cells. Exposure of circulating endothelial progenitor cells
(EPCs) and progenitor cells in the bone marrow to cardiovascular risk factors (CVRFs) modulates
their mitochondrial function in the long term. Thus, after recruiting the progenitors to the vascular
wall, the differentiated endothelial cells remain with dysfunctional mitochondria, elevated reactive
oxygen species (ROS) production, reduced mitochondrial membrane potential (MMP), and increased
cytokine release. The figure was created using BioRender.com, accessed on 22 January 2024.

5.2. Endothelial Progenitor Cells and Cardiovascular Risk Factors in Pregnancy: Programming of
Future Health

In pregnancy, maternal CVRFs may also act on the fetus and affect fetal UCB-derived
EPCs. For instance, maternal metabolic state affects EPC function and number. Moreover,
maternal pre-pregnancy BMI highjacks the number of fetal UCB-EPCs [265]. Additionally,
we have previously demonstrated that during pregnancy, a higher fasting blood glucose
within a healthy, non-diabetic range is associated with delayed colony outgrowth of fetal
ECFCs [266]. However, there are inconsistencies in the literature regarding the effect
of gestational diabetes mellitus (GDM) on fetal EPCs [267]. Several studies reported
decreased ECFC colonies with impaired migration and tube formation, accompanied
by enhanced cellular senescence and reduced proliferation [26,268]. Others, however,
revealed higher proliferation of GDM-derived ECFCs, although with preserved reduced
network-formation capacity [269]. In addition, similar outcomes were obtained in fetal
EPCs derived from pregnancies complicated by preeclampsia [267]. Findings, such as
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the developmental programming concept and the Developmental Origins of Health and
Disease (DOHaD) paradigm, that describe future susceptibility to disease based on prenatal
influences contribute to better understanding of CVD programming in utero.

Thus, circulating EPCs are sensitive to CVRFs, and their acquired impairments may
persist even after their recruitment and differentiation to ECs. However, the specific
involvement of mitochondria in ECFC dysfunction has remained unexplored.

5.3. Endothelial Progenitor Cells in Neurodegenerative Disorders

Early in its disease progression, AD is characterized by the appearance of vascular alter-
ations and BBB disruption [216,244,270,271]. In fact, animal studies in rodents have shown
that ECFCs-injections have beneficial effects on plaque deposition and memory [272,273].
Human studies also indicate a role of ECFCs in NDDs, however with variable as well as
contradictory results, reporting increased [274], unchanged [275,276], or decreased cell
numbers [277,278], possibly due to limited cohort sizes. A new study with over 1500
subjects—currently only published as a preprint—shows a correlation between the number
of circulating ECFCs and a reduced risk of AD [279].

ECFC mitochondria in AD have not been investigated so far. As mentioned, CVRFs
are affecting ECFCs and therefore, lower cardiovascular risk is associated with slower pro-
gression, i.e., cognitive decline, in the general population [280]. Due to the fact that CVRFs
cause mitochondrial dysfunction in ECFCs, a link between mitochondrial dysfunction in
ECFCs and AD, underlining the importance of future research in this field is suggested.

6. Role of Mitochondria in Endothelial Progenitor Cell Dysfunction

As ECFC number and function are sensitive to CVRFs, CVRFs could—similarly to
vascular, mature ECs—disrupt mitochondrial function in ECFCs. In fact, mitochondria
of senescent human ECFCs demonstrate an elongated shape associated with increased
oxidative stress, reduced ATP levels, and decreased mitochondrial fission, as observed by
lower FIS1 levels. The same senescent phenotype was induced by FIS1 silencing in young
(low-passage) ECFCs, which demonstrate reduced proliferation activity, denoting the role
of FIS1 in mitochondrial and endothelial dysfunction in an aging model [281].

Besides the role of mitochondria in ECFC aging, studies show mitochondrial alter-
ations in ECFCs in patients or animal models with endothelial dysfunction. ECFCs of
patients suffering from recurrent venous thromboembolic disease, a condition character-
ized by impaired endothelial function, reveal elevated ROS levels, cytokine release, and
abnormalities in the organization of mitochondrial cristae, with no changes in network
formation [282]. ECFCs of hypertensive patients with capillary rarefaction show swollen mi-
tochondria with a loss of mitochondrial cristae, molecularly accompanied by increased ROS
and NADH levels. Additionally, mitochondrial bioenergetics are impaired, with decreased
oxygen consumption rates (OCR) and reduced MMP. These alterations are paralleled by
impaired migration and adhesion of ECFCs and less CXCR4/JAK2/SIRT5 signaling, a
pathway involved in mitochondrial metabolic function [283]. Similar results were found in
ECFCs differentiated from bone-marrow-derived EPCs of an atherosclerotic mouse model
evidencing mitochondrial dysfunction, as revealed by increased size with distorted cristae
and elevated mitochondrial superoxide anion generation [284]. Altered mitochondrial func-
tion has also been observed in ECFCs isolated from patients with CAD, as demonstrated
by higher superoxide anion production. ECFCs derived from CAD patients also possess
increased network formation on Matrigel besides migratory and proliferative capacities
compared to ECFCs from individuals without CAD [285], highlighting the relationship
between mitochondrial and endothelial function. Mitochondrial morphology was, how-
ever, not investigated in that study. ECFCs of type II diabetic patients show increased
mitochondrial fragmentation and dysregulation of proteins involved in mitochondrial
dynamics [286]. Furthermore, and as mentioned before, diabetic ECFCs are functionally
compromised, with reduced proliferation, tube formation, and weakened survival ca-
pacities [25,257]. However, upregulated expression of nuclear factor erythroid 2–related
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factor 2 (NRF2), a transcription factor involved in redox balance, seems to counteract these
DM-induced effects in ECFCs from diabetic patients. and in ECFCs differentiated from
bone-marrow-derived EPCs of diabetic mice by regulating the transcription of IDH2 [286].
The relationship between the metabolic state and mitochondrial function of ECFCs is
further highlighted by a study using db/db diabetic mice, a model of T2DM. The study
investigated mitochondrial function, i.e., MMP, of bone marrow-derived ECFCs in the
bone marrow as a source, in the circulation, and in the retina, where ECFCs are poten-
tially recruited to repair and counteract retinopathy. The decreased MMP of diabetic mice
ECFCs is paralleled by impaired peroxisome proliferator-activated receptor alpha (PPARα)
levels [287]. The link between the action of CVRFs, circulating EPCs, and mitochondrial
dysfunction in the differentiated ECFCs is illustrated in Figure 4.

Further evidence highlighting the relationship between metabolism, oxidative stress,
and ECFC function comes from studies investigating the effect of hyperlipidemia on ECFCs.
Increased Nox-derived ROS production is characteristic of hyperlipidemic rats and was
associated with reduced ECFC adhesion and migration [288]. This link between NOX
activity, ROS, and reduced ECFC function was also found in hyperlipidemic patients,
where NOX2 and NOX4 RNA expression and protein levels are increased in ECFCs, which
is associated with reduced ECFC adhesion, migration, and tube formation [289].

Apart from the earlier described detrimental effects that pathologies cause in the
mitochondrial function of ECFCs, in vitro experiments also highlight the interplay of
mitochondrial function and ROS with ECFC function [290] in physiology. For instance,
in vitro experiments have demonstrated that the pulsatile pressure within the blood ves-
sels promotes vascular homing of ECFCs, both by stimulating adhesion and endothelial
differentiation. Cyclic stretch, when applied to ECFCs, decreases the content of long-chain
fatty acids (LCFAs) and induces the expression of long-chain fatty acyl-CoA synthetase 1
(ACSL1), which facilitates the catabolism of LCFAs in mitochondria via fatty acid oxidation
and oxidative phosphorylation [290]. Transplantation of ECFCs overexpressing ACSL1 into
a rat carotid artery injury model enhances ECFC adhesion and endothelialization. Further-
more, ROS signaling within the physiological range has positive effects on ECFC function:
Action of NOX4, the major ROS-producing enzyme in ECFCs, stimulates angiogenesis
in these cells by upregulating pro-angiogenic factors linked with eNOS signaling [291],
highlighting the importance of fine-tuning mitochondrial metabolism for ECFC function.

The role of mitochondria in the angiogenesis of rat ECFCs has been further emphasized
by the fact that pyruvate kinase M2 (Pkm2), a protein responsible for energy metabolism
and mitochondrial morphology, promotes ECFC angiogenesis through modulation of
glycolysis, mitochondrial fission, and fusion [292]. Further evidence relating mitochondrial
function to angiogenesis of ECFCs comes from a study using very low-density lipoprotein
receptor knockout mice as a model of ocular neovascularisation induced by Wnt signaling
overactivation. The study revealed that circulating EPCs of this mouse model possess higher
MMP, with isolated ECFCs showing increased mitochondrial function and biogenesis, as
well as a more active state towards endothelial differentiation [293].

As pointed out in this critical review, recent studies clearly show that despite the
relatively low number of mitochondria in ECs, mitochondrial dysfunction and ROS are
major contributors to endothelial dysfunction. In regard to EPCs and ECFCs, respectively,
there are less data available, but these also suggest that mitochondrial function is essential
for ECFC physiology and pathology. In summary, the evidence supports the proposition
that mitochondrial dysfunction in ECFCs and ECs is intricately linked to endothelial
dysfunction and CVD pathogenesis. However, whether this also applies to NDDs, such as
AD, remains to be investigated.

7. Mitochondria-Targeted Therapeutic Strategies to Improve Endothelial Function

In recent years, several strategies aiming to restore optimal mitochondrial function
have emerged. Notable approaches include using mitochondrial-targeted antioxidants,
mitophagy inducers, and mitochondrial biogenesis enhancers. The mitochondrial-targeted
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antioxidants are compounds specifically targeting mtROS and counteracting oxidative
stress. By restoring redox balance, these compounds hold promise for mitigating mito-
chondrial impairment in ECFCs and ECs, thus ultimately thwarting CVD progression.
MtROS overproduction can be hindered, for example, by mitoquinone (MitoQ) [294], a
mitochondria-targeting antioxidant accumulating within the organelle and neutralizing
oxidative stress [294]. Findings from a randomized controlled trial revealed that acute oral
intake of MitoQ restored mitochondrial function and improved endothelial function in
patients suffering from peripheral artery disease [295]. Acute and, importantly, chronic
intake of MitoQ delivered promising results in elderly adults [296]. In an ex vivo model,
exposure of human aortic ECs (HAECs) to plasma from MitoQ-treated adults reduced
mtROS, lowered circulating oxLDL levels, and improved endothelial properties [206]. Other
promising mitotropic molecules are SkQ1 [297–300], MitoTEMPO [301], SS-31 [302,303],
and AntiOxCIN4 [304–306]. As discussed, enhancing mitophagy can prevent the accu-
mulation of dysfunctional mitochondria, preserve cellular health, and improve EPC and
EC function. Rapamycin [307,308], urolithin A [309], carbonyl cyanide m-chlorophenyl
hydrazone (CCCP) [310], and PTEN-induced kinase 1 (PINK1)/parkin pathway activa-
tors [311] were described as potential mitophagy inducers. Another therapeutic strategy is
using mitochondrial biogenesis enhancers to facilitate mitochondrial function. That would
allow for replenishing the pool of functional mitochondria, bolstering cellular energy pro-
duction, and combating dysfunction. Resveratrol, PPARγ, Adenosine monophosphate
(AMP)-activated protein kinase (AMPK) activators, carnitine, berberine, exercise, and
starvation have been described as mitochondrial biogenesis activators [312–318].

Implementing these strategies carries profound implications for comprehending the
pathogenesis of CVD and NDDs and formulating therapeutic approaches. Directing atten-
tion toward mitigating mitochondrial dysfunction provides an innovative perspective for
addressing the fundamental mechanisms fueling endothelial dysfunction. By reinstating
optimal mitochondrial function within EPCs and ECs, the progression of endothelial dys-
function, atherosclerosis, other cardiovascular complications, and NDDs may potentially
be abated.

8. Conclusions and Future Perspectives

Endothelial dysfunction resulting from the action of CVRFs underlies and contributes
to various non-communicable and age-related diseases, including CVD, NDDs, and
metabolic diseases. CVD, for instance, has been categorized by the WHO as the disease with
the highest mortality worldwide [319]. The relationship between CVRFs, mitochondrial
and endothelial dysfunction highlights that a profound understanding of endothelial mito-
chondrial damage is crucial to improve the prevention and treatment of CVD and NDDs.
Until now the role of ECFCs in CVD and NDDs is not yet fully understood. However, the
fact that not only ECs but also circulating ECFCs and even their precursors located, for
instance, in the bone marrow, are damaged by CVRFs demonstrates the harm that CVRFs
exert on the vasculature. Circulating ECFCs would normally be responsible for endothelial
repair and recovery. It is, therefore, all the more important to understand the cellular
processes of CVD and other non-communicable diseases to develop possible therapies.

Within the framework of the DOHaD concept, an intriguing question surfaces: Can
mitochondrial dysfunction be orchestrated by early influential factors in utero? This
perspective aligns with the notion that events occurring during critical developmental
stages might exert a lasting impact on mitochondrial health, consequently contributing
to the trajectory of endothelial, cardiovascular, and neuronal health or susceptibility to
disease later in life [320]. This introduces an additional layer of complexity when striving
to address CVD. It is imperative to account for the fact that a significant proportion of the
proposed strategies to enhance mitochondrial function have not undergone testing during
pregnancy, except for exercise [321–326] and MitoQ [327–329], nor has the particular effect
on ECs or EPCs been evaluated.
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Future research endeavors should delve deeper into the mechanisms that contribute
to mitochondrial dysfunction in EPCs and ECs. Additionally, clinical translation of these
strategies requires rigorous testing in preclinical models and human trials to validate
their efficacy, safety, and long-term benefits. As our understanding of mitochondrial
involvement in endothelial dysfunction deepens, successfully translating these approaches
could revolutionize cardiovascular therapeutics, potentially leading to more effective
strategies for managing and preventing CVD and NDDs.
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OGDH—2-oxoglutarate dehydrogenase; acetyl-CoA—acetyl-coenzyme A; ATF6—activating tran-
scription factor-6; ADP—adenosine diphosphate; AMP—Adenosine monophosphate; ATP—adenosine
triphosphate; AJs—adherence junctions; AGE—advanced glycation end products; RAGE—AGE re-
ceptor; AD—Alzheimer’s disease; AMPK—AMP-activated protein kinase; Aβ—amyloid β; AngII—
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acid dehydrogenase; Ca2+—calcium; CCCP—carbonyl cyanide m-chlorophenyl hydrazone; CVD—
cardiovascular disease; CVRFs—cardiovascular risk factors; CAT—catalase; CAMs—cellular adhesion
molecules; CECs—cerebral ECs; CoQ10—Coenzyme Q10; CAD—coronary artery disease; CRP—C-
reactive protein; cGMP—cyclic guanosine monophosphate; CytC—cytochrome C; COX4I2—cytochrome
c oxidase 4 isoform 2; DAMPs—damage-associated molecular patterns; DOHaD—Developmental
Origins of Health and Disease; DM—diabetes mellitus; DHODH—dihydroorotate dehydrogenase;
DRP1—dynamin-related protein 1; ETFDH—electron transfer flavoprotein dehydrogenase; ETC—
electron transport chain; ER—endoplasmic reticulum; ECs—Endothelial cells; ECFCs—endothelial
colony-forming cells; eNOS—endothelial nitric oxide synthase; EPCs—Endothelial progenitor cells;
ET-1—endothelin-1; ERO1—ER oxidoreductin; FeIII—ferric iron; FeII—ferrous iron; FADH2—flavin
adenine dinucleotide; FMN—flavin mononucleotide; GJs—Gap junctions; GDM—gestational diabetes
mellitus; GLUT—glucose transporters; GPX1-7—glutathione peroxidases; GPD—glycerol-3-phosphate
dehydrogenase; HOX1-2—heme oxygenases; HUVECs—human umbilical vein ECs; H2O2—hydrogen
peroxide; OH−—hydroxyl anion; •OH—hydroxyl radical; HIF1a—hypoxia-inducible factor-1 a; IRE1—
inositol-requiring protein-1; IL—interleukin; ICAM—intracellular CAM; IDH2—isocitrate dehydroge-
nase NADP+ 2; LDLR—LDL receptor; LPS—lipopolysaccharide; lncRNA—long non-coding RNAs;
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ACADL—long-chain acyl-CoA dehydrogenase; LCFAs—long-chain fatty acids; ACSL1—long-chain fatty
acyl-CoA synthetase 1; LDL—low-density lipoprotein; MFN—membrane proteins mitofusin; metHb—
methemoglobin; miRNA—microRNAs; MCU—mitochondrial Ca2+ uniporter; MCUR1—mitochondrial
Ca2+ uniporter regulator 1; Mdivi-1—mitochondrial division inhibitor 1; mtDNA—mitochondrial DNA;
MID—mitochondrial dynamic proteins; MFF—mitochondrial fission factor; FIS1—mitochondrial fission
protein 1; MMP—mitochondrial membrane potential; mPTP—mitochondrial permeability transition
pore; MQC—mitochondrial quality control; mtROS—mitochondrial ROS; MitoQ—mitoquinone; NQO1—
NADPH quinone dehydrogenase 1; NDUFA4L2—NADH dehydrogenase ubiquinone 1 alpha subcom-
plex, 4-like 2; NOX—NADPH oxidase; NDDs—neurodegenerative disorders; NADH—nicotinamide
adenine dinucleotide; NADPH—nicotinamide adenine dinucleotide phosphate; NO—nitric oxide;
NLRP3—nod-like receptor family pyrin domain-containing 3; NRF2—nuclear factor erythroid 2–related
factor 2; NFκB—nuclear factor kappa B; OPA1—optic atrophy protein 1; oxLDL—oxidized LDL; OCR—
oxygen consumption rates; HbO2—oxyhemoglobin HbO2; PARK2—Parkin; PRR—pattern recognition
receptors; PPAR α/γ—Peroxisome Proliferator-Activated Receptor PPAR Alpha/Gamma; ONOO−—
peroxynitrite anion; PAI-1—plasminogen activator inhibitor-1; P. gingivalis—Porphyromonas gingivalis;
PRODH—proline dehydrogenase; PGI2—prostacyclin; PGH2—prostaglandin H2; PERK—protein
kinase RNA PKR-like ER kinase; PINK1—PTEN-induced kinase 1; PDH—pyruvate dehydrogenase;
Pkm2—pyruvate kinase M2; Q-cycle—quinol cycle; RhoA—Ras homolog family member A; Ras—rat
sarcoma; ROS—reactive oxygen species; RBCs—red blood cells; ROCK1—Rho associated coiled-coil
containing protein kinase 1; Sirt1—sirtuin 1 lysine deacetylase; SMCs—smooth muscle cells; sGC—
soluble guanylyl cyclase; STZ—streptozotocin; SRXN1—sulfiredoxin 1; O2

•−—superoxide anion;
SOD—superoxide dismutase; TXN—thioredoxin; TXA2—thromboxane A2; TJs—tight junctions;
tPA—tissue plasminogen activator; TCA—tricarboxylic acid; TNFα—tumor necrosis factor alpha;
T2DM—type II DM; UCB—Umbilical cordblood; UCP2—uncoupling protein 2; UPR—unfolded pro-
tein response; VCAM—vascular CAM; VD—Vascular dementia; (VE)-Cadherin—vascular endothelial
Cadherin; VEGF—vascular endothelial growth factor; VSMCs—vascular SMCs; VEGFR2—VEGF
receptor 2; ACDVL—very long-chain acyl-CoA dehydrogenase; vWF—von Willebrand factor; XDH—
xanthine dehydrogenase; XO—xanthine oxidase.
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